Διδακτικά Βιβλία του Παιδαγωγικού Ινστιτούτου

Αναζήτηση

Βρες
Εμφάνιση

Αρχή ελάχιστης ενέργειας

Κατ’ αρχάς θα πρέπει να θυμίσουμε ότι οι εξισώσεις Schr?dinger μπορούν να επιλυθούν ακριβώς μόνο στην περίπτωση του υδρογόνου και των υδρογονοειδών (ιόντων με ένα μόνο ηλεκτρόνιο π.χ. He+, Li2+ κλπ.). Παρόλα αυτά έχει αποδειχτεί ότι η μορφή των τροχιακών στα πολυηλεκτρονικά άτομα δε διαφέρει αισθητά απ’ αυτήν που περιγράφηκε για το άτομο του υδρογόνου. Αντίθετα, υπάρχει διαφορά στη διαδοχή των ενεργειακών σταθμών του ηλεκτρονίου. Για να γίνουμε σαφείς, σ’ ένα πολυηλεκτρονικό άτομο, πλην των ελκτικών δυνάμεων πυρήνα - ηλεκτρονίου (που καθορίζονται από τον κύριο κβαντικό αριθμό), ασκούνται απώσεις ηλεκτρονίου - ηλεκτρονίου (που καθορίζονται από το δευτερεύοντα κβαντικό αριθμό). Για το λόγο αυτό διαφοροποιούνται οι ενεργειακές στάθμες των υποστιβάδων της ίδιας στιβάδας, όπως φαίνεται στο διπλανό σχήμα.

- Σύμφωνα με την αρχή της ελάχιστης ενέργειας, κατά την ηλεκτρονιακή δόμηση ενός πολυηλεκτρονικού ατόμου, τα ηλεκτρόνια οφείλουν να καταλάβουν τροχιακά με τη μικρότερη ενέργεια, ώστε να αποκτήσουν τη μεγίστη σταθερότητα στη θεμελιώδη κατάσταση.

Επειδή δύσκολα μπορεί να θυμηθεί κανείς το διάγραμμα διαδοχής των ενεργειακών σταθμών, που παρατίθεται παραπλεύρως, δίνεται ένα μνημονικό διάγραμμα. Στο διάγραμμα αυτό, η συμπλήρωση των τροχιακών ακολουθεί μια - μια, με τη σειρά τις διαγώνιες, με τη φορά που δείχνουν τα βέλη. Κατ΄ αυτό τον τρόπο δομείται ηλεκτρονιακά το άτομο στη θεμελιώδη του κατάσταση.

ΣΧΗΜΑ: Ενεργειακές στάθμες των τροχιακών στα πολυηλεκτρονικά άτομα. Να παρατηρήσουμε, ότι στο υδρογόνο και τα υδρογονοειδή οι ενεργειακές στάθμες των υποστιβάδων, που ανήκουν στην ίδια στιβάδα, ταυτίζονται

ΠΙΝΑΚΑΣ 1.3 Μνημονικός κανόνας για τη διαδοχική συμπλήρωση των ατομικών τροχιακών με ηλεκτρόνια στα πολυηλεκτρονικά άτομα. [pic]

Σύμφωνα με την αρχή της ελάχιστης ενέργειας ισχύει: 1. Ανάμεσα σε δύο υποστιβάδες, τη χαμηλότερη ενέργεια έχει εκείνη που έχει το μικρότερο άθροισμα των δύο πρώτων κβαντικών αριθμών (n+ l) 2. Στην περίπτωση που το άθροισμα (n+ l) είναι το ίδιο για δύο υποστιβάδες, τότε μικρότερη ενέργεια έχει η υποστιβάδα με το μικρότερο n. Να παρατηρήσουμε ότι μετά την εισαγωγή ηλεκτρονίων στην υποστιβάδα 3d αυτή έχει λιγότερη ενέργεια από την 4s. Ανάλογα ισχύει και για τις 4d και 5s.

Ας δούμε για παράδειγμα, πώς κατανέμονται τα 26 ηλεκτρόνια στο άτομο του σιδήρου, στη θεμελιώδη του κατάσταση. Πρώτα τοποθετούνται δύο ηλεκτρόνια στην υποστιβάδα 1s, και γράφουμε 1s2, μετά τοποθετούμε δύο ηλεκτρόνια στην υποστιβάδα 2s (1s2 2s2), ακολουθούν έξι ηλεκτρόνια στην υποστιβάδα 2p (1s2 2s2 2p6), δύο ηλεκτρόνια στην υποστιβάδα 3s (1s2 2s2 2p6 3s2), έξι στην υποστιβάδα 3p (1s2 2s2 2p6 3s2 3p6) και δύο στην 4s (1s2 2s2 2p6 3s2 3p6 4s2). Τα τελευταία έξι ηλεκτρόνια πάνε στην υποστιβάδα 3d, η οποία χωράει συνολικά δέκα ηλεκτρόνια. Έτσι, η ηλεκτρονιακή δομή του σιδήρου είναι: [pic]

Να παρατηρήσουμε στην παραπάνω ηλεκτρονιακή δομή ότι γράφουμε πρώτα την 3d και μετά την 4s, παρόλο που η υποστιβάδα 4s συμπληρώθηκε πρώτη, σύμφωνα με την αρχή ελάχιστης ενέργειας. Αυτό συμβαίνει επειδή μετά την εισαγωγή ηλεκτρονίων στην υποστιβάδα 3d αυτή αποκτά λιγότερη ενέργεια από την 4s. Ανάλογα ισχύει και για τις 4d και 5s. Για τον ίδιο λόγο κατά τον ιοντισμό του Fe σε Fe2+ αποβάλλονται τα 4s και όχι τα 3d ηλεκτρόνια. Δηλαδή, η ηλεκτρονιακή δομή του ιόντος Fe2+ είναι: [pic]

Αν γράψουμε τα ηλεκτρόνια σε στιβάδες και όχι σε υποστιβάδες έχουμε: [pic]

Τέλος, να σημειώσουμε ότι σε ορισμένες περιπτώσεις η κατανομή των ηλεκτρονίων δεν είναι αυτή που προβλέπεται, με βάση τις αρχές δόμησης. Π.χ. η ηλεκτρονιακή δομή του 24Cr είναι (2-8-13-1) και όχι (2-8-12-2). Οι περιπτώσεις όμως αυτές ξεφεύγουν από τα όρια μελέτης μας.

Η αρχή ηλεκτρονιακής δόμησης (aufbau) περιλαμβάνει: 1. την αρχή ελάχιστης ενέργειας, 2. την απαγορευτική αρχή του Pauli και 3. τον κανόνα του Hund.